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Abstract

First experimental investigations performed on a new test rig are presented. For a staggered
labyrinth seal with fourteen cavities the stiffness coefficient and the leakage flow are measured.

The experimental results are compared to calculated results which are obtained by a one-
volume bulk-flow theory. A perturbation analysis is made for seven terms. It is found out that

the friction factors have great impact on the dynamic coefficients. They are obtained by
turbulent flow computation by a finite-volume model with the Reynolds-equations used as basicequations.
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Damping, inertia, stiffness coefficients
Force

Labyrinth height
Part of cavity perimeter
Friction factor

Circumferential velocity, axial velocity
Eccentricity

Cross-sectional area ofeavity
Mass flow related to circumference
Length of cavity
Rotating speed
Pressure

Radius of rotor

Radial clearance

Peripheral angle

lsentropic coefficient

Friction factor

Flow coefficient, dynamic viscosity
Shear stress

Perturbation terms

Angular velocity

Density
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Introduction

Despite the numerous efforts in the past, there still remain some open questions in

understanding tip-clearance excitation and, as a consequence, a lack in modelling and

predicting forces and coefficients induced by labyrinth flow. The efforts to increase the
efficiency and to minimize the specific costs or the specific weight of a rotor-easing

configuration ot_en lead to parameters which are in some cases very close to the stability
margin. Beyond the stability limit the rotational energy which is transferred to the rotor bending
exceeds the damping that dissipates this energy. As a consequence, self-excited vibration

mechanisms impede the scheduled operation regime of the turbomachine. In addition to the

labyrinth seal forces several other mechanisms (e.g. oil whip) act on the rotor and an

amplification of the excitation may occur [5].
The labyrinth seal forces are usually described in a linearized formulation for small

deflections out of the centered position by using dynamic coefficients. These are stiffness,

damping and inertia coefficients.

Many investigations were performed to estimate the dynamic coefficients on several seal

geometries. In the experimental field two procedures are frequently used. First, static
measurements were made [4, 2,12] which allow the determination of the direct and cross-

coupled stiffness coefficients of the labyrinth seal. Second, dynamic measurements [2, 7],
which were carried out to identify the other coefficients in eq. (1).

The experimental results can be used for verification of the various theoretical approaches.

The computational effort is low when a bulk-flow theory - either a one-, two- or three-volume
model [1, 3, 8]- is used. An increased amount of computational time is needed if the seal

geometry is discretized by a grid, and if the local variables are calculated by the finite-
difference or the finite-volume method [9]. The forces acting on the rotor are obtained by a final

integration.
In this paper a staggered labyrinth seal is investigated. Only few experimental results are

published for this geometry in comparison to others. With the help of the static identification
method a maximum accuracy for the measured stiffness coefficients is expected. In most cases

these coefficients are of outstanding importance for the dynamic behaviour of the rotor.
The calculated results are obtained by a one-volume bulk-flow theory. It is found out that

the bulk-flow theory in connection with the perturbation method is highly sensitive to friction
factors. In this case they are calculated by means of turbulent flow computation. The Reynolds

equations in cylindrical coordinates including the standard k-e model give the velocity

components and the turbulent values. A boundary-layer theory is applied and the friction
factors are calculated depending on the axial and circumferential status of the flow.

Test Rig

The test rig is designed with the purpose to measure labyrinth flow induced radial forces on
the eccentric rotor. In fig. la. a schematic representation of the test rig can be seen. Two

identical grooved labyrinth seals with fourteen cavities each are located symmetrically to the

inflow region. The inflow region is outlined in fig. lb. The inlet swirl can be varied by the

combination of radial and circumferential flow components.

210



/

//
/

Fig. la. Schematic of the test fig

The geometric data of the staggered labyrinth are indicated in fig. 2. At the center position
the gap between the rotor and the seal tips attached to the casing is 0.5 nun. The eccentricity
can be adjusted in horizontal direction by moving the casing relative to the rotor.

One of the seals is used to measure the pressure distribution in circumferential direction and, as

a consequence, the acting force in each cavity and on the whole rotor. Ten pressure lines are

located in each cavity. This gives a total of some 160 data points per labyrinth seal unit. The

pressure lines arc connected to a multifunction pressure measurement rig. The flow field in the
cavities and the inlet swirl is determined by using a probe which is located in the second
labyrinth seal.
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Fig. lb. Inflow configuration of the test rig Fig. 2. Geometric data of the labyrinth

(dimensions in mm)
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Some test rig dimensions and experimental conditions are listed in table 1. The maximum

preswiri velocity (Cu_22 m/s) is reached whcn there is an inflow only via the tangential feeders.
Due to the fact that the direction of the rotational speed can be changed the preswirl can be

negative and positive. With high prcssurc differences on the labyrinth seal the critical pressure

ratio prevailes on the last seal tip.

Table 1. Test rig dimensions and experimental conditions

Diameter (stator)
Length (seal)
Clearance (e=0)
Eccentricity
Pressure difference

Rotating' speed

.D [mini
L [mm]
d [mm]
e, [mm]
/_o [kPa]
n [.rpm]

240
150
0,5

max. 0,4
max. 450

*8000

First measurements at the center position show that the pressure is declining in axial

direction, alternately in big and small steps. Together with the geometry dependent flow area
this causes a zigzag course of the flow coefficient (fig. 3), which is almost entirely independent

on the rotational speed, inlet swirl and eccentricity. The mean value of the flow coefficient in

the neutral position of the rotor is 0.69 and 0.675 when the eccentricity is 0.4 ram.
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Fig. 3. Flow coefficient for centric and eccentric position of the rotor ( Ap = 160000 Pa;
n = 4000 rpm )

Considering the direction of displacement, the force acting on the rotor can be splitted in a

restoring and a cross force. Despite the fact that thc restoring force is conservative it has an
influence on the critical speeds and the vibrational modes and thus on the stability. When the

restoring force has a decentralized effect the bending modes are in general more deflected and

more excited by cross forces, and the stability limit declines.

In center position of the rotor the circumferential pressure distribution in each cavity has
shown that almost no resulting force is acting on the rotor and which means that the rotor is

well manufactured and exactly alined. At the off-center position of the rotor the restoring force

has a zigzag course like the flow coefficient (fig. 4). The resulting force for the whole labyrinth

212



is decenterizing for all parameters investigated. This behavior of the restoring force can be

explained by the change of state of the throttled flow in the alternating large flow areas in the

cavaty and the small flow areas between the strips and rotor. Only in the gap behind the last

seal tip the direction of the force is directed against the deflection as is normally expected forplain seals.

"--'-*----- 0,000 RPM

-- - n- -. 2,000 RPM

- " _- "' 4,000 RPM

6,000 RPM

Fig. 4. Restoring force versus cavity in dependence of rotating speed ( Ap = 300000 Pa;
e = 0.4 ram; cu _. 22 m/s)

From a maximum in the first cavities the cross force declines towards the end of the

labyrinth seal (fig. 5). The influence of the rotational speed on the restoring and the cross force

is small. For all investigated parameters the restoring force was higher than the cross force.

Fig. 5. Cross force versus cavity in dependence of rotating speed ( Ap = 300000 Pa;
e = 0.4 ram; cu _ 22 m/s)
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Therotationalspeedandthe entry swirl act together and influence the magnitude of the

destabilizing force (fig. 6). When the direction of rotation and inlet swirl coincide then the cross
force is smaller than in case of counteracting swirl and drag exerted by the rotating surface of

the rotor to the flow. The influence of swirl exceeds the influence of rotation. Decisive for the

magnitude of the cross force is the change of circumferential velocity and not the absolute value
of this velocity. In case of conspiring swift and drag the circumferential velocity has the highest

values but not the cross force.
Further details about the experimental investigations effected under consideration of

numerous parameters are contained in [1 l].The circumferential velocity cu in front of the seal
is about 20 m/s for all investigations in this paper which are performed with swirl.
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Fig. 6. Influence of entry swirl and rotating speed on the cross force ( Ap = 460000 Pa;

n = 4000 rpm )

Theoretical Treatment

With the help of a bulk-flow theory the circumferential pressure distribution due to the

eccentric position of the rotor relative to the casing is obtained.

The governing equations are the following:

)+ ,)+/h,+,-/h,=o

)2 c_it79C,,, Cui - C,,i I ,:Z /(Ri ( RRo) - C"i =C?Cui+ C=__ +/hi + - -
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(2) - (5)
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This is thewell-knownsetof partial differential equations. In order to find an analytical
solution the differential equation system is linearized by splitting the main variables into an

average value (for the centric position) and an additional value for the eccentric position. This
perturbation method is applicated for eight terms.

6=
p= p,(l+_)

- XR.(I+A )

f =f.(l+E)

=
(6)(a-h)

The most important ones are g for the pressure distribution and AS, AR for the friction
factor.

Eqs. (6) are put in eqs. (2) - (5) and an exponential fommlation for the perturbation term
leeds to the cross force acting on the rotor of the labyrinth seal.

2£

F = -RRI p. ] _sin cpd_p
o

(7)

With the help of this perturbation method it is possible to calculate the forces in a first step
and, in a second step, to obtain the dynamic coefficients of the seal. Details of the calculation
method can be seen in [1].

The value of the cross force is influenced by two factors. First, by the difference of the

circumferential velocity from chamber to chamber. This leads to methods to control the swirl,
for example swirl-brakes or helically grooved seals, a well-known and often discussed
phenomenon.

Second, a greet influence of the cross forces on the friction factor is found. This can be seen

in figure 7. For the given labyrinth geometry in the test rig a great variety of results for the

cross forces is obtained by the application of several friction factors for labyrinth seals.
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For the following calculations the friction factor is obtained by computing the turbulent flow

field in the labyrinth seal with the Reynolds equations in connection with a k-_ turbulence
model. The circumferential velocity near the wall is determined and a theory for the

computation of the friction factor is applied.

r* 2 = 4c£ (8)
c/ = O. 5pc

For the shear stress on the labyrinth wall the following formulation is found:

r,, = pu2r (9)

where the shear stress velocity is dependent on the region where the calculated velocity occurs,

i.e. either in the viscous sublayer or the full turbulent layer. Details can be seen in [10l,

This theory leads to the friction factor of the seal. The Reynolds number is defined

Re = pc=H (1 O)

21,t

Results of the calculated friction factor in relation to other methods can be seen in fig. 8.

For all the methods there can be observed a tendency of decreasing friction factors with

increasing Reynolds numbers. For the calculated method the friction factor reaches an
asymptotic value, whereas in the other eases the factors are still decreasing.
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Fig. 8. Comparison of friction factors obtained by various methods and authors.
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Comparison between Theory and Experiment

The cross coupled stiffness is an important input value for calculations of the rotordynamic

stability limit. For three differencies of inlet and outlet pressure maximum preswirl and

constant rotating speed the calculated results are compared to experimental results (fig. 9). The

calculated results are obtained by the bulk-flow theory presented before including the friction
factors contained in fig. 8.

The calculation exceeds slightly the experiment whereas the tendency is in good agreement.
The almost proportional increase of the calculated cross force with the inlet-outlet pressure
difference cannot be confirmed totally by experiment. The measured cross force is about linear

to eccentricity.
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Fig. 9. Comparison of calculation and experiment in dependence of the pressure difference
( n = 6000 rpm; m - measurement, c -c,aleulation )

Conclusions

Measured normal and cross forces for a fourteen cavity staggered labyrinth are presented.

The forces are obtained by the circumferential pressure distribution in each cavity when the

rotor is in an eccentric position relative to the casing. The influence of inlet swirl, pressure ratio
and rotor speed has been investigated.

The restoring force acts in direction of eccentricity and can decrease indirectly the stability
limit. The cross force is linear to eccentricity and increases with the pressure ratio. Despite the

fact that the length of the seal is large the effect of inlet swirl has a higher effect than the

rotating speed. The absolute value of circumferential velocity is not decisive for the magnitude
of the cross force which, is the highest in the first cavities.

The calculation of the labyrinth forces is very sensitive to friction factors. When the friction

factors, which are obtained by turbulent flow computation are used as input quantities in a

bulk-flow theory calculation the agreement with experimental data is fairly good.
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